Perfect state transfer on signed graphs

نویسندگان

  • John Brown
  • Chris D. Godsil
  • Devlin Mallory
  • Abigail Raz
  • Christino Tamon
چکیده

We study perfect state transfer of quantum walks on signed graphs. Our aim is to show that negative edges are useful for perfect state transfer. First, we show that the signed join of a negative 2-clique with any positive (n, 3)-regular graph has perfect state transfer even if the unsigned join does not. Curiously, the perfect state transfer time improves as n increases. Next, we prove that a signed complete graph has perfect state transfer if its positive subgraph is a regular graph with perfect state transfer and its negative subgraph is periodic. This shows that signing is useful for creating perfect state transfer since no complete graph (except for the 2-clique) has perfect state transfer. Also, we show that the double-cover of a signed graph has perfect state transfer if the positive subgraph has perfect state transfer and the negative subgraph is periodic. Here, signing is useful for constructing unsigned graphs with perfect state transfer. Finally, we study perfect state transfer on a family of signed graphs called the exterior powers which is derived from a many-fermion quantum walk on graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which weighted circulant networks have perfect state transfer?

The question of perfect state transfer existence in quantum spin networks based on weighted graphs has been recently presented by many authors. We give a simple condition for characterizing weighted circulant graphs allowing perfect state transfer in terms of their eigenvalues. This is done by extending the results about quantum periodicity existence in the networks obtained by Saxena, Severini...

متن کامل

A characterization of signed graphs with generalized perfect elimination orderings

An important property of chordal graphs is that these graphs are characterized by existence of perfect elimination orderings on their vertex sets. In this paper, we generalize the notion of perfect elimination orderings to signed graphs, and give a characterization for graphs admitting such orderings, together with characterizations restricted to some subclasses and further properties of those ...

متن کامل

Perfect state transfer, integral circulants, and join of graphs

We propose new families of graphs which exhibit quantum perfect state transfer. Our constructions are based on the join operator on graphs, its circulant generalizations, and the Cartesian product of graphs. We build upon the results of Bašić and Petković (Applied Mathematics Letters 22(10):1609-1615, 2009) and construct new integral circulants and regular graphs with perfect state transfer. Mo...

متن کامل

Some classes of integral circulant graphs either allowing or not allowing perfect state transfer

The existence of perfect state transfer in quantum spin networks based on integral circulant graphs has been considered recently by Saxena, Severini and Shparlinski. Motivated by the mentioned work, Bašić, Petković and Stevanović give the simple condition for the characterization of integral circulant graphs allowing the perfect state transfer in terms of its eigenvalues. They stated that integ...

متن کامل

Perfect state transfer in integral circulant graphs

The existence of perfect state transfer in quantum spin networks based on integral circulant graphs has been considered recently by Saxena, Severini and Shparlinski. We give the simple condition for characterizing integral circulant graphs allowing the perfect state transfer in terms of its eigenvalues. Using that we complete the proof of results stated by Saxena, Severini and Shparlinski. More...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantum Information & Computation

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013